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Properties of the two dimensional Ising model with fixed magnetization are
deduced from known exact results on the two dimensional Ising model. The
existence of a continuous phase transition is shown for arbitrary values of the
fixed magnetization when crossing the boundary of the coexistence region.
Modifications of this result for systems of spatial dimension greater than two
are discussed.
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1. INTRODUCTION

In a recent paper, (1) 2d and 3d Ising models with fixed magnetization are
investigated numerically and signatures are found in the microcanonical
caloric curves of finite systems which hint a first-order phase transition.
From the numerical data, however, it is not clear if the observed signatures
scale appropriately to persist in the thermodynamic limit, and hence prop-
erties of the infinite system cannot be inferred from the data.
Although an exact solution is known only for the zero-field case of the

2d Ising model without any constraints on the magnetization, (2) there are a
number of exact results which can be used to tackle the questions of exis-
tence and order of a phase transition at fixed magnetization analytically.
As a convenient thermodynamic function to discuss this topic, the entropy
as a function of the interaction energy and the magnetization is chosen.
An important ingredient in the following discussion is the equivalence

of ensembles, which holds for Ising systems of arbitrary spatial dimen-
sion. (3) This allows to combine the known exact results, which are typically



obtained in the canonical ensemble, with some simple geometrical argu-
ments on the microcanonical entropy.
Section 2 gives a definition of the Ising model. In Section 3, several

thermodynamic quantities are defined and implications of some known exact
results of the 2d Ising model on these quantities are discussed. Then, only
elementary analysis is needed to establish the existence of a phase transition
of the Ising model with fixed magnetization in Section 4 and to identify the
transition as a continuous one in Section 5. Modifications of this results for
the case of spatial dimension d > 2 are discussed in Section 6.

2. THE 2D ISING MODEL

Consider an even2 number N=L2, L ¥ 2Z, of classical spins si ¥

2 This is only for notational simplicity.

{−1,+1}, i=1,..., N, on a two dimensional quadratic lattice {1,..., L}2

with periodic boundary conditions. Then the nearest-neighbor Ising
model (4) is defined by the Hamiltonian

H: CN Q R, sW E(s)−hM(s) (2.1)

where CN — {−1,+1}N is the configuration space of the system, s —
(s1,..., sN) ¥ CN are called configurations, and h ¥ R is an external magnetic
field.

M: CN Q (2Z) 5 [−N,+N], sW C
N

i=1
si (2.2)

is the magnetization and

E: CN Q (4Z 5 [−2N,+2N])0{−2N+4, 2N−4}, sW C
Oi, jP
sisj

(2.3)

is the interaction energy. Oi, jP denotes a summation over all pairs of spins
which are neighbors on the lattice.

3. THERMODYNAMIC QUANTITIES

We follow ref. 5 to define the entropy density3 s of the 2d Ising model

3 The term ‘‘density’’ will be omitted in the following.

in the thermodynamic limit NQ. as a function of the interaction energy
density4 e and the magnetization density5 m. Let

4 See note 3.
5 See note 3.

B+(e, m) :={(eŒ, mŒ) ¥ R2 : (e− eŒ)2+(m−mŒ)2 [ +2} (3.1)
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Fig. 1. Approximate graph of the entropy as a function of the interaction energy e and the
magnetization m.

be the ball of center (e, m) and radius +. Then the entropy can be defined
as

s : D(s)Q R,

(e, m)Wmin
+ > 0

lim
NQ.

1
N
ln : 3s ¥ CN : 1

E(s)
N
,
M(s)
N
2 ¥ B+(e, m)4 : (3.2)

where | · | denotes the cardinality of a set. The domain

D(s) :=3(e, m) | e ¥ [−2,+2], |m| [ 2− e
4
4 (3.3)

of the entropy has the shape of a triangle. This is due to the fact that a
given value of the interaction energy e is equivalent to a given proportion
of ‘‘antiparallel’’ neighboring spins si=−sj (i, j neighbors), which implies
an upper bound on the absolute value of the magnetization for configura-
tions of the given energy. Due to the spin inversion symmetry of the Ising
Hamiltonian, the entropy s(e, m) is symmetric with respect to the magneti-
zation m. Figure 1 is intended to give an idea how the graph of s approxi-
mately looks like. An exact closed form expression for s is not known. Via
Legendre transformation, this would be equivalent to a closed form
expression of the free energy density of the 2d Ising model for arbitrary
external field h.
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The variable thermodynamically conjugate to the magnetization m is
bh, the product of the inverse temperature b and the external field h. An
expression of the magnetization

m̃: [−2,+2]×(R0{0})Q [−1,+1], (e, bh)W m̃(e, bh) (3.4)

as a function of bh and the interaction energy e is obtained from the
entropy implicitly via the Legendre transformation

sup
m
[s(e, m)+bhm]=: s(e, m̃(e, bh))+bhm̃(e, bh) (3.5)

The spontaneous magnetization m± is defined6 as the zero-field limit

6 This is not entirely in accordance with the standard terminology, where one speaks of spon-
taneous magnetization only where m± (e) ] 0.

m± : [−2,+2]Q [−1,+1], eW lim
bhQ ±0

m̃(e, bh) (3.6)

The domain of the entropy s, the triangle D(s), will be used in the
schematic picture of Fig. 2 to illustrate some properties of the entropy. The
bold curve in the triangle is the spontaneous magnetization of the 2d Ising
model, for which an exact expression is known from combining Yang’s
result (6) with the caloric curve obtained from Onsager’s solution. (2) For the
spontaneous magnetization the condition

m± (e)=0 Z e \ −`2 (3.7)

holds, and the value −`2 is called the critical energy.
The region of D(s) bounded by the non-zero spontaneous magnetiza-

tion and the line e=−2,

C :={(e, m) ¥D(s) | |m| < |m± (e)|} (3.8)

is called the coexistence region (hatched in Fig. 2). Inside the closure C̄ of
the coexistence region, s is constant with respect to the magnetization, i.e.,

s(e, m)=s(e, m± (e)) -(e, m) ¥ C̄ (3.9)

which is the signature of the field-driven first-order phase transition of the
2d Ising model at low energies and zero external field. In Fig. 2, some
parallel lines are drawn inside the coexistence region to symbolize lines of
constant entropy. Outside the coexistence region C, the concavity of the
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Fig. 2. Schematic picture of the entropy s(e, m). The triangle is the domain of the entropy,
the bold line is the spontaneous magnetization. Parallels drawn inside the coexistence region C
(hatched) indicate straight lines of constant entropy.

entropy combined with the definition of the spontaneous magnetization
(3.6) implies the strict inequality

s(e, m) < s(e, m± (e)) -(e, m) ¨ C̄, m ] 0 (3.10)

Now, from the two-variable function s, we define the one-variable function

szf: D(szf)Q R, eW s(e, m)|m=m± (e) (3.11)

on the domain D(szf)=[−2,+2], which is the entropy of the 2d Ising
model in the z

¯
ero-f
¯
ield limit, and the family of one-variable functions

sm0 : D(sm0 )Q R, eW s(e, m)|m=m0 (3.12)

on the domain D(sm0 )=[−2, 2−4 |m0 |], which is the entropy of the 2d
Ising model with fixed magnetization m0. In the following, existence and
order of a phase transition in the 2d Ising model with fixed magnetization
are discussed by making use of these two functions.

4. EXISTENCE OF A PHASE TRANSITION

For all values of the fixed magnetization |m0 | < 1, the entropy sm0 is
non-analytic for at least one value of e ¥D(sm0 ). This is a consequence of:
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(a) The fact that every line {(e, m) ¥ int D(s) | m=m0} of constant
magnetization m0 ¥ (−1,+1) in the interior of D(s) has at least one point
of intersection with the spontaneous magnetization (as sketched in Fig. 2),
(b) sm0 (e)=szf(e) for all (e, m0) ¥ C̄ [from Eq. (3.9)],
(c) sm0 (e) < szf(e) for all (e, m0) ¨ C̄, m0 ] 0 [from Eq. (3.10)],
(d) The entropy szf(e) of the Ising model in zero field is analytic for

all e < −`2 and non-analytic for e=−`2 [Otherwise b(e)=“szf(e)
“e would

show a non-analyticity for e < −`2. Due to the equivalence of ensembles,
this would be in contradiction to the analytic result for the caloric curve
e(b) below the critical temperature obtained from Onsager’s solution. (2)],
(e) sm0=0(e)=szf(e) for all e [from Eqs. (3.7) and (3.9)].

Case m0 ] 0. Item (a) guarantees that, for all values of the fixed
magnetization |m0 | < 1, the line of constant m0 crosses the boundary of the
coexistence region once, and the corresponding energy e0(m0) is given by
the inverse function of the spontaneous magnetization m± . From condi-
tions (b) and (c), we know that szf and sm0 are identical on the interval
[−2, e0(m0)], but different elsewhere. According to (d), szf is analytic on
the interval (−2, −`2), and, as the analytic continuation of a function is
unique, it follows that sm0 (e) is non-analytic at e=e0(m0) < −`2 for all
0 < |m0 | < 1.

Case m0=0. In this case, according to item (e), the entropy func-
tion of the Ising model with fixed magnetization is identical to that of the
zero field case on the entire interval [−2,+2]. Hence, also the non-analy-
ticity of szf(e) at e=e0(0)=−`2 [item (d)] is present in sm0=0.

From Yang’s result (6) for the spontaneous magnetization of the 2d
Ising model, the inverse temperature b0 corresponding to e0(m0) via the
caloric curve is known to be

b0: [−1,+1]Q [bc,.], m0 W
1
2 arcsinh[(1−m

8
0)
−1/4] (4.1)

where bc=
1
2 ln(1+`2) is the critical temperature of the 2d Ising model.

Hence, we conclude that the 2d Ising model with fixed magnetization m0
shows a phase transition at the inverse temperature b0(m0).

5. ORDER OF THE PHASE TRANSITION

In this section, we show that the phase transition of the Ising model
with fixed magnetization is a continuous one.
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A temperature-driven first-order phase transition is characterized by
the appearance of latent heat, i.e., a discontinuity in the caloric curve e(b),
where b is the inverse temperature. In the Ising model with fixed magneti-
zation, due to the thermal equation of state

b(e, m)=
“s(e, m)
“e

(5.1)

such a discontinuity corresponds to a linear piece in the entropy sm0 . In the
following, by proving the absence of a linear piece in sm0 , the phase transi-
tion of the 2d Ising model with fixed magnetization m0 is shown to be con-
tinuous for all values of m0 ¥ [−1,+1]. For this discussion we distinguish
between the two cases of a linear piece inside and outside the coexistence
region, respectively.

5.1. No Linear Piece of sm0
Inside the Coexistence Region

From Eq. (3.9) it follows that a linear piece of sm0 inside the coexis-
tence region implies a linear piece in szf. It is known from Onsager’s solu-
tion (2) that there is no temperature-driven first-order phase transition in the
2d Ising model in zero field, hence there is no linear piece of sm0 inside the
coexistence region.

5.2. No Linear Piece of sm0
Outside the Coexistence Region

This result can already be found in the literature. For an Ising system
of arbitrary spatial dimension in non-zero external field or at temperatures
above the critical temperature, there exists a unique, translation invariant
equilibrium state. (7) It is shown in ref. 5 that this implies strict concavity of
the entropy outside the phase coexistence region C. This strict concavity of
course does not allow for a linear piece in the entropy sm0 of an Ising
system with fixed magnetization m0 outside C.
Additionally, another proof of the absence of a linear piece in sm0

outside the coexistence region is given by showing a stronger result on the
analyticity properties of the entropy s. It will be argued that a linear piece
of sm0 outside the coexistence region is in contradiction to the analyticity
properties of the Gibbs free energy

g: D(g)Q R, (b, bh)W − lim
NQ.

(bN)−1 ln C
s ¥ CN

e−bH(s) (5.2)

Existence and Order of the Phase Transition of the Ising Model 139



D(g) :=R+×R, of the 2d Ising model. It follows from the circle theorem
of Lee and Yang (8) and a result from Lebowitz and Penrose (9) on analyti-
city properties, that g is analytic for all non-zero values of the external field
h or for all inverse temperatures b smaller than the critical inverse tem-
perature.7 The Gibbs free energy g and the entropy s are connected by

7 Actually, this result is valid for arbitrary spatial dimension.

means of a Legendre transformation

s(e, m)=sup
b, bh
[−bg(b, bh)+be−bhm] (5.3)

For regions where g is differentiable, e and m can be expressed in terms of
the Gibbs free energy as

m(b, bh)=−b
“g(b, bh)
“(bh)

(5.4)

and

e(b, bh)=g(b, bh)+b
“g(b, bh)
“b

(5.5)

For regions where g is strictly concave, the inversions b(e, m) and bh(e, m)
exist, and Eq. (5.3) can be rewritten as

s(e, m)=b(e, m) 5b(e, m) “g(b(e, m), bh(e, m))
“b(e, m)

+bh(e, m)
“g(b(e, m), bh(e, m))

“bh(e, m)
6 (5.6)

This implies analyticity of s(e, m) for all pairs (e(b, bh), m(b, bh)) ¥ P for
which g(b, bh) is analytic, and

P=3(e, m) ¥D(s)0 C̄ : “s(e, m)
“e

> 04 (5.7)

is the set of pairs (e, m) outside the closure of the coexistence region corre-
sponding to positive temperatures. Then, also sm0 (e) is analytic for all pairs
(e, m0) ¥ P.
The entropy s is zero on the boundary of its domain and continuously

differentiable on its entire domain. (10) Together with the analyticity prop-
erties discussed above, this rules out the possibility of a linear piece in sm0
outside the coexistence region.
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6. SPATIAL DIMENSION GREATER THAN TWO

Some remarks are in order concerning the validity of the arguments of
Sections 4 and 5 for Ising models of spatial dimension d > 2. The crucial
difference to the 2d Ising model is that, to the knowledge of the author, it is
not clear if there exists more than one temperature-driven phase transition
in the Ising model in zero field for d > 2 which is present in the thermody-
namic functions of the bulk.8 If this is not the case, the results of this paper

8 There exist further transitions, for example the percolation transition in the 3d Ising model
at inverse temperature bp > bc, which, however, does not lead to non-analyticities in the
thermodynamic functions.

are valid for Ising systems of higher spatial dimension. If there is more than
one such transition, some modifications of the results on the Ising model
with fixed magnetization arise:

• For values of (e, m0) inside the coexistence region C, the Ising model
with fixed magnetization shows identical thermal behavior (in the sense of
identical caloric curves) as the Ising model in zero field, including phase
transitions possibly existing in the zero-field case.

• The results used in Section 5.2 are valid for Ising systems of arbi-
trary spatial dimension. Hence, there is no linear piece in the entropy of the
Ising model with fixed magnetization outside the coexistence region C.

• In general the arguments of Section 4 are also valid for d > 2 and the
Ising model with fixed magnetization shows a phase transition when cross-
ing the boundary of C. However, when crossing this boundary at an energy
for which the zero-field entropy szf is non-analytic, it might be the case that
the entropy of the Ising model with fixed magnetization is the analytic
continuation of szf across the locus of the non-analyticity. Then, for this
particular value of the fixed magnetization m0, the Ising model with fixed
magnetization does not show a phase transition when crossing the bound-
ary of the coexistence region.

7. CONCLUSION

In the 2d Ising model with fixed magnetization, for all values of the
fixed magnetization |m0 | < 1, there is a continuous phase transition. This
phase transition is unique in the sense that there are no further non-analy-
ticities in any thermodynamic function of the bulk or in the caloric curve.
The inverse temperature at which the phase transition occurs is given by
b0(m0)=

1
2 arcsinh[(1−m

8
0)
−1/4]. Hence, in the thermodynamic limit, the
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S-shape reported for the microcanonical caloric curve of finite Ising
systems with fixed magnetizations in ref. 1, does not converge to a straight
line signalling a first order phase transition, but to a single point at which a
continuous phase transition occurs.
For spatial dimensions d > 2, a first-order transition can occur in the

Ising model with fixed magnetization only if there is a first order transition
in the d-dimensional zero-field case. Although, to the knowledge of the
author, a proof is lacking, this is expected to be not the case for the 3d
Ising model.
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